Efficient estimation of multivariate semi-nonparametric GARCH filtered copula models
نویسندگان
چکیده
This paper considers estimation of semi-nonparametric GARCH filtered copula models in which the individual time series are modeled by and joint distributions multivariate standardized innovations characterized parametric copulas with nonparametric marginal distributions. The extend those Chen Fan (2006) to allow for conditional means volatilities, estimated via method sieves. fitted residuals then used estimate parameters densities jointly sieve maximum likelihood (SML). We show that, even using data, our SML two-step procedure still root-n consistent asymptotically normal, asymptotic variances both estimators do not depend on filtering errors. Even more surprisingly, estimator data achieves full semiparametric efficiency bound as if were directly observed. These nice properties lead simple accurate Value-at-Risk (VaR) financial flexible dynamics, contemporaneous tail dependence asymmetric innovations. Monte Carlo studies demonstrate that have smaller mean squared errors compared finite samples. A real application is presented.
منابع مشابه
Risk Management in Oil Market: A Comparison between Multivariate GARCH Models and Copula-based Models
H igh price volatility and the risk are the main features of commodity markets. One way to reduce this risk is to apply the hedging policy by future contracts. In this regard, in this paper, we will calculate the optimal hedging ratios for OPEC oil. In this study, besides the multivariate GARCH models, for the first time we use conditional copula models for modelling dependence struc...
متن کاملRobust M-estimation of multivariate GARCH models
In empirical work on multivariate financial time series, it is common to postulate a Multivariate GARCH model. We show that the popular Gaussian quasi-maximum likelihood estimator of MGARCH models is very sensitive to outliers in the data. We propose to use robust M-estimators and provide asymptotic theory for M-estimators of MGARCH models. The Monte Carlo study and empirical application docume...
متن کاملEstimation of temporally aggregated multivariate GARCH models
This paper investigates the performance of quasi maximum likelihood (QML) and nonlinear least squares (NLS) estimation applied to temporally aggregated GARCH models. Since these are known to be only weak GARCH, the conditional variance of the aggregated process is in general not known. Thus, one major condition that is often used in proving the consistency of QML, the correct specification of t...
متن کاملSemiparametric Multivariate Garch Models
Estimation of multivariate GARCH models is usually carried out by quasi maximum likelihood (QMLE), for which recently consistency and asymptotic normality have been proven under quite general conditions. However, there are to date no results on the efficiency loss of QMLE if the true innovation distribution is not multinormal. We investigate this issue by suggesting a nonparametric estimation o...
متن کاملSimulated Method of Moments Estimation for Copula-Based Multivariate Models
This paper considers the estimation of the parameters of a copula via a simulated method of moments type approach. This approach is attractive when the likelihood of the copula model is not known in closed form, or when the researcher has a set of dependence measures or other functionals of the copula that are of particular interest. The proposed approach naturally also nests method of moments ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Econometrics
سال: 2021
ISSN: ['1872-6895', '0304-4076']
DOI: https://doi.org/10.1016/j.jeconom.2020.07.012